首页 走进不科学

第520节


高斯。

    高斯眨了眨眼:

    “你瞅啥?”

    徐云朝他轻轻扬了扬手中的手稿,对高斯说道:

    “高斯教授,您这份手稿末尾的那句话……”

    “哦,你说那个啊。”

    高斯回忆了几秒钟,很快想起了徐云说的内容,便解释道:

    “字面意思,当初我在收到约瑟夫寄来的欧拉手稿后花了两天……应该是两天时间吧,要不就三天——反正很快就算出了上百组的亲和数。”

    “后来我原本想归纳出一道对应的公式,不过算了一半感觉太简单了,就把它放到了一边。”

    “哦对了,波恩哈德在三年前也算出来了这个公式,他的评价是有手就行。”

    徐云:

    “……”

    高斯口中的约瑟夫就是约瑟夫·路易斯·拉格朗日,也是欧拉的爱徒,同样是一位青史留名的数学家。

    他与欧拉的关系,差不多就相当于黎曼和高斯一般。

    欧拉——拉格朗日——柯西,以及高斯——狄利克雷——黎曼,这算是近代数学很有名的两个传承派系。

    另外在历史上。

    拉格朗日也是欧拉手稿的继承者之一,他会寄信给高斯倒也正常。

    只是……

    高斯的这番话,未免也太tmd打击人了吧?

    要知道。

    哪怕是徐云穿越来的2022年,数学界也依旧没有一个统一的亲和数公式。

    无论是欧拉还是叶维勒,他们的公式都有一定的失误率——例如欧拉便漏算了1184/1210这组数,直到1867年才由意大利的一个神童计算出来。

    这个神童的名字叫做帕格尼尼,每次想到这个名字,徐云都会歪楼到猪柳蛋帕尼尼……

    后世筛选亲和数靠的主要是约数和比较,也就是符合条件的输出yes,反之便是no。

    说难听点。

    后世筛选的实质,其实就是穷举法。

    结果在1850年这个时代,高斯和黎曼居然都推导出了亲和数的标准公式?

    不过考虑到这二位在历史上的成就,加之欧拉已经推导出了部分亲和数公式……

    好吧,他们能做到这一步似乎也没啥好意外的。

    与此同时。

    这也算是解开了一桩数学史上的谜题:

    在计算机发明之前,几乎每个数学流派都会在亲和数方面投入大量的精力和时间。

    但唯独高斯的哥廷根数学派系除外。

    无论是高斯本人,还是黎曼、雅可比、戴德金或者狄利克雷,他们全都没有留下过任何研究亲和数的作品或者记录。

    这其实是一种很奇怪的现象,好比后世搞量子理论的大佬不去研究微扰论一样违和。

    如今随着高斯的这番话,一切总算是真相大白了:

    合着他们早就破解了亲和数的谜团,觉得太简单才没去管……

    随后高斯看了眼有些意犹未尽的徐云。

    沉吟片刻,主动来到皮箱边翻找了几下。

    很快。

    他便从中取出了另一册稍厚一些的手稿,递给了徐云,说道:

    “罗峰,既然你对亲和数有兴趣,这卷手稿或许会符合你的口味。”

    第307章 高斯的宝藏(下)

    “……”

    书房内。

    看着高斯递到面前的这份全新手稿,徐云的脸上不由冒出了一股好奇。

    这里头的内容会是什么?

    要知道。

m.dXSzxeDU.Com
加入书签 我的书架
上页 走进不科学下章